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Abstract

The Beppo–Levi native spaces which arise when using polyharmonic splines to interpolate in many
space dimensions are embedded in Hölder–Zygmund spaces. Convergence rates for radial basis function
interpolation are inferred in some special cases.
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1. Introduction

A radial basis function is a function of the form

s = p +
∑
x∈X

�x�(· − x), (1)

where p is a low degree polynomial, � is a fixed radially symmetric function, X is a finite set
of points and �x is a coefficient associated with the point x ∈ X. The error analysis for radial
basis function interpolation using polyharmonic splines takes place in Beppo–Levi spaces (see
[3] and below for a definition). Our aim is to infer convergence rates for this interpolation from
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the knowledge that the Beppo–Levi seminorm of the interpolation error is bounded. We do this
by seeing that the Beppo–Levi space can be embedded in some homogeneous Hölder–Zygmund
space which implies that the first or second differences of certain derivatives of the error decay
as h to a power. Error estimates can then be deduced from the knowledge that the error is zero at
the interpolation points.

We begin by introducing some standard concepts and notation. For a multi-index � ∈ Nd ,
define x� = x

�1
1 x

�2
2 · · · x�d

d and D� = ��1
1 ��2

2 · · · ��d

d , where �s = �
�xs

. Let S denote the space of

rapidly decaying, infinitely differentiable functions on Rd and S ′ denote its dual space, the space
of tempered distributions. We denote the action of a distribution f on a test function � by 〈f, �〉.
For a function � ∈ S we define the Fourier transform

�∧(x) =
∫

Rd
�(y)e−ixy dy.

Then, the Fourier transform of f ∈ S ′ is defined by

〈f ∧, �〉 = 〈f, �∧〉 for all � ∈ S.

The polyharmonic spline basic functions are given by

�d,k(x) =
{ |x|2k−d , d odd,

|x|2k−d log |x|, d even,
(2)

where 2k > d and | · | denotes the Euclidean norm. The corresponding polyharmonic splines have
the form

s = pk−1 +
∑
x∈X

�x�d,k(· − x), (3)

where pk−1 ∈ �d
k−1 the space of polynomials of degree k − 1 in d variables. The coefficients {�x}

will be described (in a conventional but regrettable notation) as orthogonal to �d
k−1 in the sense

that

L(q) :=
∑
x∈X

�xq(x) = 0 for all q ∈ �d
k−1. (4)

For any open set �, D(�) denotes the space of all C∞ functions � with compact support K ⊂ �.
Further, for any function g ∈ L1

loc(�), the locally integrable functions on �, let ��,g be the
distribution in D′(�) defined by

〈��,g, �〉 =
∫
�

g(�)�(�) d� for all � ∈ D(�).

�g is shorthand for �Rd ,g
. Often we will write g instead of �g .

The error analysis for interpolation using polyharmonic splines is made relatively straightfor-
ward by the fact that (distributionally)

�k
d�d,k = Cd,k�0

for some constant Cd,k , where �0 is the d-dimensional Dirac measure at the origin. A good
reference for these matters is Gelfand–Shilov [6].
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The analysis of radial basis interpolation in d-dimensional space using polyharmonic splines
takes place in Beppo–Levi spaces, also known as homogeneous Sobolev spaces. For k ∈ Z+ the
Beppo–Levi spaces BLk(R

d) is defined to be the space of all tempered distributions f on Rd such
that D�f ∈ L2(Rd) for all |�| = k; see Deny and Lions [3, p. 366]. We will shorten this notation
to BLk when there is no danger of confusion. A seminorm on this space is

|f |BLk
=
⎧⎨⎩∑|�|=k

c�‖D�f ‖2
2

⎫⎬⎭
1/2

, (5)

where c� = k!
�1!...�d ! and by the Multinomial Formula∑

|�|=k

c�x
2� = |x|2k.

The kernel of this seminorm is just �d
k−1. By an embedding theorem for Beppo–Levi spaces, when

2k > d elements of BLk(R
d) are continuous functions (see e.g. Duchon [4]).

Define the subspace Sk−1 of S by

Sk−1 =
{
� ∈ S :

∫
Rd

x	�(x) dx = 0 for all |	|�k − 1

}
and let

̂Sk−1 =
{
� : � = �̂ for some � ∈ Sk−1

}
.

Then both Sk−1 and ̂Sk−1 are subspaces of S. We equip them with the topology of S.
Note that if � ∈ ̂Sk−1, then (D	�)(0) = 0 for all |	|�k − 1, so that by Taylor polynomial

expansion

|�(�)|/|�|k �C
∑
|�|=k

‖D��‖∞ for all � 
= 0.

Since also � ∈ S it follows that �/| · |k ∈ L2(Rd). Furthermore,

�j → 0 in ̂Sk−1 implies �j /| · |k → 0 in L2(Rd). (6)

We will need the following lemma concerning functions in a Beppo–Levi space.

Lemma 1. Let k ∈ N and f ∈ BLk . Then there exists a function g ∈ L1
loc

(
Rd\{0}) such that

‖| · |kg‖2 = |f |BLk
, and

〈f̂ , �〉 =
∫

Rd
g(�)�(�) d� for all � ∈ ̂Sk−1.

Proof. Let � be a multiindex with |�| = k. Then

(D�f )∧ = (i �)�f̂ = �g� (7)

for some g� ∈ L2(Rd) ⊂ L1
loc(R

d).
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Given 0 
= x ∈ Rd , choose j so |xj | = ‖x‖∞. Choose 	 as the multiindex with jth component k
and other components zero. Then (i �)	 is bounded away from zero on the open ball Ux about x of
radius ‖x‖∞/2. Let � ∈ D(Ux) and note 1/(i �)	 ∈ C∞(Ux)∩L∞(Ux). Hence 1

(i �)	
� ∈ D(Ux)

and

〈f̂ , �〉 =
〈
(i �)	f̂ ,

1

(i �)	
�

〉
=
∫

Ux

(
g	(�)

1

(i �)	

)
�(�) d�

=
∫

Ux

hUx (�)�(�) d�,

where hUx (�) := 1
(i �)	

g	(�) for all � ∈ Ux , is a function in L1(Ux). Now suppose x, y in Rd are
such that V = Ux ∩ Uy is nonempty. Then∫

Rd
hUx (�)�(�) d� = 〈f̂ , �〉 =

∫
Rd

hUy (�)�(�) d�

for all � ∈ D(V ), which implies hUx = hUy a.e. on V. Define g = hUx on Ux . Then g is well
defined and is locally integrable on Rd\{0}. By a partition of unity argument we see that

〈f̂ , �〉 =
∫

Rd
g(�)�(�) d� for all � ∈ D(Rd\{0}). (8)

By (7) this implies that for every |�| = k,

(i �)�g(�) = g�(�) a.e. on Rd . (9)

Since
∑

|�|=k c��
2� = |�|2k for all � ∈ Rd ,

∥∥∥|�|kg
∥∥∥2

2
=
∥∥∥∥∥∥
∑
|�|=k

c��
2�|g(�)|2

∥∥∥∥∥∥
1

=
∑
|�|=k

c� ‖g�‖2
2 ,

where in the last step we have used (9). It follows that∥∥∥| · |kg
∥∥∥2

2
=
∑
|�|=k

c� ‖g�‖2
2 = |f |2BLk

. (10)

Now define a functional f̂1 on ̂Sk−1 by

〈f̂1, �〉 =
∫

Rd
g(�)�(�) d� =

∫
Rd

{
|�|kg(�)

}{�(�)

|�|k
}

d�. (11)

Then by (6), f̂1 is continuous on ̂Sk−1. By the Hahn–Banach theorem f̂1 can be extended to a
continuous linear functional on S.

Then for � ∈ S, and multiindex � with |�| = k, (i �)��(�) ∈ ̂Sk−1 and

〈(D�f1)
∧, �〉 = 〈f̂1, (i �)��〉

=
∫

Rd
g(�)(i �)��(�) d� =

∫
Rd

g�(�)�(�) d�.
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It follows that (D�f1)
∧ = g� in S ′, and

|f1|2BLk
=
∑
|�|=k

c�‖D�f1‖2
2 =

∑
|�|=k

c�‖g�‖2
2 = |f |2BLk

.

Since D(Rd\{0}) ⊂ ̂Sk−1, (8) and (11) imply 〈f̂1, �〉 = 〈f̂ , �〉 for all � ∈ D(Rd\{0}). Hence
̂f − f1 is supported at the origin, so that f − f1 is a polynomial say p. Since f − f1 ∈ BLk the

polynomial p is in �d
k−1. Since p ∈ �d

k−1

〈p̂, �〉 = 0 for all � ∈ ̂Sk−1,

so that

〈f̂ , �〉 = 〈f̂1, �〉 =
∫

Rd
g(�)�(�) d� for all � ∈ ̂Sk−1 (8′)

and the lemma follows. �

2. A scale of Hölder–Zygmund spaces

Let 0 < 
�1. We define the (homogeneous) Hölder–Zygmund space Ċ
 to be the space of all
continuous functions f : Rd → C such that the seminorm

‖f ‖Ċ
 :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sup

0 
=h∈Rd

‖�hf ‖∞
|h|
 , 0 < 
 < 1,

sup
0 
=h∈Rd

∥∥∥�2
hf

∥∥∥∞
|h| , 
 = 1,

(12)

is finite. Here �hf (x) is the forward difference �1
hf (x) = f (x + h) − f (x), and for n =

2, 3, . . . , �n
hf = �h

(
�n−1

h f
)

.

Now consider 
 > 1. Let j be the greatest nonnegative integer such that j < 
 which implies
0 < 
 − j �1. Define Ċ
 to be the space of all Cj functions such that

‖f ‖Ċ
 :=
∑
|�|=j

‖D�f ‖Ċ
−j < ∞. (13)

Let [·] denote the integer part function. Then we combine (12) and (13) to rewrite the definition
of the seminorm in an expression valid for all 0 < 


‖f ‖Ċ
 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
|�|=[
]

sup
0 
=h∈Rd

∥∥�h

(
D�f

)∥∥∞
|h|
−[
] , 
 non integer,

∑
|�|=
−1

sup
0 
=h∈Rd

∥∥∥�2
h

(
D�f

)∥∥∥∞
|h| , 
 an integer.

(14)

The kernel of the seminorm is �d[
].
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It is interesting to recall one of Zygmund’s [12] reasons for introducing the Zygmund space of
2� periodic functions g with second modulus

�2(g, h) := sup
x∈R, 0<k �h

|g(x) − 2g(x + k) + g(x + 2k)|,

of order O(h) as h → 0. This was that the Lipschitz classes associated with the ordinary mod-
ulus �(g, h) do not characterize those functions g such that the error in best approximation by
trigonometric polynomials of degree n, E�

n(g) is O(n−1) as n → ∞. Indeed using the ordinary
modulus one has

�(g, h) = O(h) ⇒ E�
n(g) = O(n−1) ⇒ �(g, h) = O(h| log h|),

whereas using the second modulus, that is a Zygmund space, one has

�2(f, h) = O(h) ⇐⇒ E�
n(g) = O(n−1).

In view of this history we call the spaces Ċ
 Hölder–Zygmund spaces. These spaces have also
played an important role in other branches of analysis such as harmonic analysis and partial
differential equations.

There is a family of equivalent seminorms for Ċ
. Let 0 < 
 < n + j where n and j are
nonnegative integers such that 0�j < 
. Then

‖f ‖Ċ
 ≈
∑
|�|=j

sup
0 
=h∈Rd

∥∥�n
h

(
D�f

)∥∥∞
|h|
−j

(15)

for all f ∈ Ċ
. Note that the right-hand side of (15) contains (14) as a special case with j the
greatest integer less than 
 and n chosen as 2 or 1 according as 
 is, or is not, an integer. The
right-hand side of (15) has kernel �d

n+j−1 and without the restriction f ∈ Ċ
 the equivalence

should be interpreted modulo �d
n+j−1.

3. The embedding theorem

The embedding theorem we prove in this section is a folklore result in harmonic analysis.
Usually such theorems would be proven by means of a Littlewood–Paley decomposition. (We
refer to [1,2,8,10] for the Littlewood–Paley theory.) An inconvenient aspect of the Littlewood–
Paley norms is that they annihilate polynomials of all orders, while we want to control the degrees
of the polynomials appearing in the embedding theorem, and this would usually require additional
arguments. However in the 2-norm setting that we are interested in it is possible to give a simple
direct proof which we present in the next theorem.

Theorem 2. Suppose k > d/2 and define 
 = k − d
2 . Suppose n ∈ N, j ∈ N0 are such that

0�j < 
 and 0 < max{
, k − 1} < n + j . Then there exists a constant E, depending on k, d, n

and j, such that

sup
0 
=h∈Rd

∑
|�|=j

|h|j−
‖�n
h

(
D�f

) ‖∞ �E|f |BLk
for all f ∈ BLk. (16)
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Furthermore, BLk is continuously embedded in Ċ
 modulo �d
k−1. Thus there exists a constant G

depending only on k and d such that for each f ∈ BLk there is a corresponding polynomial q in
�d

k−1 so that

‖f − q‖Ċk− d
2
�G|f |BLk

.

Proof. Let f ∈ BLk and � be a multiindex with |�| = j . Let g be the L1
loc

(
Rd\{0}) function

whose existence is guaranteed by Lemma 1. We will show shortly that the function

m(�) = g(�)(ei �h − 1)n(i �)� (17)

is in L1(Rd) with

‖m‖1 �C|h|
−j |f |BLk
. (18)

Assume this in the meantime.
Begin with the equation〈[

�n
h

(
D�f

)]∧
, �
〉
= 〈f̂ , (ei �h − 1)n(i �)��(�)〉 for all � ∈ S. (19)

Note that for |�||h|�1,
∣∣∣ei �h − 1

∣∣∣ � |�||h|. Since, by hypothesis, n + j �k then for � ∈ S,

(ei �h − 1)n(i �)��(�) is in ̂Sk−1 and, by Lemma 1, Eq. (19) can be realized as〈[
�n

h

(
D�f

)]∧
, �
〉
=
∫

Rd
g(�)(ei �h − 1)n(i �)��(�) d� =

∫
Rd

m(�)�(�) d�. (20)

Therefore by Fourier inversion, and the assumed estimate for m, (18),∥∥�n
h

(
D�f

)∥∥∞ �(2�)−d‖m‖1 �C|h|
−j |f |BLk
,

and estimate (16) follows.
We now proceed to show that the function m of Eq. (17) satisfies estimate (18).

‖m‖1 =
∫

Rd

∣∣∣g(�)
(
ei �h − 1

)n

(i �)�
∣∣∣ d�

=
∫

Rd

∣∣∣∣∣∣∣
(
ei �h − 1

)n

|�|k (i �)� g(�)|�|k
∣∣∣∣∣∣∣ d�

�

∥∥∥∥∥∥∥
(
ei �h − 1

)n

(i �)�

| · |k

∥∥∥∥∥∥∥
2

∥∥∥g| · |k
∥∥∥

2

=

∥∥∥∥∥∥∥
(
ei �h − 1

)n

(i �)�

| · |k

∥∥∥∥∥∥∥
2

|f |BLk
, (21)

where in the last step we have used Lemma 1.
The only thing that remains is to estimate the first term on the right-hand side of Eq. (21).
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Consider two separate cases |�||h|�1 and |�||h| > 1. In the first case the inequality∣∣∣ei �h − 1
∣∣∣ � |�||h|

holds. Applying this we get∣∣∣∣∣∣∣
(
ei �h − 1

)n

(i �)�

|�|k

∣∣∣∣∣∣∣ �
|�|n|h|n|�|j

|�|k = |h|n|�|n+j−k.

Hence, with �d the surface area of the unit sphere in Rd ,⎛⎜⎝∫
|�|�1/|h|

∣∣∣∣∣∣∣
(
ei �h − 1

)n

(i �)�

|�|k

∣∣∣∣∣∣∣
2

d�

⎞⎟⎠
1
2

� √
�d |h|n

(∫ 1/|h|

0
r2(n+j−k)+d−1 dr

) 1
2

=
√

�d |h|n√
2n + 2j − 2


(
1

|h|
)n+j−


=
√

�d√
2n + 2j − 2


|h|
−j .

When |�||h| > 1 use the estimate
∣∣∣ei �h − 1

∣∣∣ �2. Then∣∣∣∣∣∣∣
(
ei �h − 1

)n

(i �)�

|�|k

∣∣∣∣∣∣∣ �2n|�|j−k

so that⎛⎜⎝∫
|�|> 1

|h|

∣∣∣∣∣∣∣
(
ei �h − 1

)n

(i �)�

|�|k

∣∣∣∣∣∣∣
2

d�

⎞⎟⎠
1
2

� 2n√�d

(∫ ∞
1
|h|

r2(j−k)+d−1 dr

) 1
2

= 2n√�d√−d − 2(j − k)

(
1

|h|
)j−k+ d

2

= 2n√�d√
2
 − 2j

|h|
−j .

This completes the proof of the first statement in the theorem.
We now turn to the second statement of theorem which concerns the continuous embedding of

BLk in Ċ
 modulo �d
k−1. For this choose 0�j < 
 and n such that n + j = k. Then from the

previous result∑
|�|=j

|h|j−
‖�n
h

(
D�f

) ‖∞ �E|f |BLk
.

The quantity on the left above corresponds to one of the equivalent seminorms discussed in the
section on Hölder–Zygmund spaces, the equivalence to be interpreted modulo �d

n+j−1 = �d
k−1.
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That is there exist a polynomial q ∈ �d
k−1 such that

‖f − q‖Ċk− d
2
�G|f |BLk

,

completing the proof of the theorem. �

4. Interpolation and error estimates

Consider the following interpolation problem. Let X ⊂ Rd be a finite set of distinct points
unisolvent for �d

k−1. Let s be the function which interpolates to f ∈ BLk on X and has the form

s = pk−1 +
∑
x∈X

�x�d,k(· − x), (22)

where pk−1 ∈ �d
k−1. In order that s be in BLk we require that the coefficients {�x} be orthogonal

to �d
k−1 in the sense defined in (4). The existence and uniqueness of such a polyharmonic spline

interpolant is well known.
Then, using standard arguments (see e.g. [5, Lemma 3.2]) one can easily show that, for any

g ∈ BLk , with g(x) = f (x), for all x ∈ X,

|g|2BLk
= |s|2BLk

+ |g − s|2BLk
,

so that s minimizes the seminorm (energy functional) over all interpolants from BLk . In particular
|f − s|BLk

� |f |BLk
.

Now, applying the embedding of Theorem 2, and in particular (16), we find

Corollary 3. Suppose k > d/2 and define 
 = k − d
2 . Suppose n ∈ N, j ∈ N0 are such that

0�j < 
 and 0 < max{
, k − 1} < n+ j . Let X be a finite set of distinct points in Rd unisolvent
for �d

k−1. Then there exists a constant C, depending only on k, d, n and j, such that if f ∈ BLk

and s is the polyharmonic spline interpolant to f on X of form (22) then

sup
0 
=h∈Rd

∑
|�|=j

|h|j−
‖�n
h

(
D�(f − s)

) ‖∞ �C|f |BLk
. (23)

Corollary 3 can be used to produce error estimates for polyharmonic spline interpolation.

5. Examples

We present three examples here. The first gives convergence rates in one dimension for natural
splines of odd degree. The second is for thin-plate spline interpolation in two dimensions, and the
third for interpolation using |x| in three dimensions.

5.1. Univariate splines

In this case, for k ∈ N, we consider the basic function �1,k(x) = |x|2k−1. Let X ⊂ [a, b] ⊂ R,
with a, b ∈ X. The natural degree 2k − 1 spline interpolant has the form

s = pk−1 +
∑
x∈X

�x | · −x|2k−1,
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where pk−1 ∈ �1
k−1. The set X is required to be unisolvent for �d

k−1 which in this one-dimensional
case reduces to X having cardinality, #X, at least k. The coefficients {�x : x ∈ X} are required to
be orthogonal to �1

k−1. The native Beppo–Levi space for �1,k is BLk(R) which by Theorem 2 is
embedded in Ċk−1/2(R) modulo �1

k−1. Further, Corollary 3 implies the existence of a constant C
such that

sup
0 
=h∈R

|h|−1/2‖�hD
k−1[f − s]‖∞ �C|f |BLk(R). (24)

Recall that a set X is said to have separation distance � for a set Y if

sup
y∈Y

inf
x∈X

|y − x| = �.

Let � be the separation distance for the set X in [a, b]. Label the points in X in increasing order as

a = x1 < x2 < · · · < xn = b.

Applying Rolle’s Theorem repeatedly, as in the classical proof of the formula for the error in
polynomial interpolation, each interval (xi, xi+m) contains at least one zero of D(m)[f − s], for
1�m < k and 1� i�n − m. Denote the set of zeros of Dm[f − s] in [a, b] by Xm. The Rolle’s
Theorem argument implies that for each 1�m < k the set Xm has cardinality at least #X − m

and considered as a subset of [a, b] has a separation distance not exceeding 2m�.
Now, let z ∈ [a, b] be such that M = maxy∈[a,b] |Dk−1[f − s](y)| = |Dk−1[f − s](z)|. Let �

be the nearest point to z in Xk−1. Then necessarily |z − �|�2(k − 1)� =: h. Hence, using (24),

M = |Dk−1[f − s](z) − Dk−1[f − s](�)|�Ch1/2|f |BLk(R) �C′�1/2|f |BLk(R).

Since Dk−2[f − s] is differentiable on [a, b], the Mean Value Theorem implies that for any y and
� in [a, b]

Dk−2[f − s](y) − Dk−2[f − s](�) = (y − �)Dk−1[f − s](c),
where c is an unknown point between y and �. Now, Dk−2[f − s] = 0 on the set of points Xk−2
which considered as a subset of [a, b] has separation distance 2(k − 2)�. Hence choosing � as
the closest point to y in Xk−2 it follows that

sup
y∈[a,b]

|Dk−2[f − s](y)|�C�3/2|f |BLk(R).

We may proceed in the same way, using the Mean Value Theorem repeatedly, decreasing the order
of the derivatives as we go, to finally conclude that

‖f − s‖∞,[a,b] �C�k−1/2|f |BLk(R).

This agrees with the results given for example by Light and Wayne [7, Corollary 4.5].
We can also infer convergence rates for complete spline interpolation. Here, the spline inter-

polant is of the form

s = pk−1 +
∑
x∈X

�x | · −x|2k−1,
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where pk−1 ∈ �1
k−1. The coefficients are chosen so that s(x) = f (x) for all x ∈ X which contains

a and b, and also

Dm[f − s](a) = Dm[f − s](b) = 0, 1�m�k − 1. (25)

The complete spline end conditions (25) replace the orthogonality conditions (4) of the “natural”
spline case. The complete spline also has a minimum energy characterization. It minimizes the
energy seminorm (

∫ b

a
[g(k)(t)]2 dt)1/2 over all suitably smooth functions g satisfying both the

Lagrange interpolation conditions and the complete spline end conditions (25).
The native space in this case is the Sobolev space Wk([a, b]), whose elements are the restrictions

of functions in Wk(R) to [a, b]. These spaces are embedded in the inhomogeneous Hölder–
Zygmund space of continuous functions whose (k − 1)st derivative is in Lip1/2[a, b] (see e.g.

[8]). Applying the same argument as for natural splines we infer a convergence rate of order �k− 1
2

where 2� is the mesh size.

5.2. Thin-plate spline interpolation in two dimensions

The minimal energy characterization of of thin-plate spline interpolants, due to Duchon [5],
has influenced many to study and use radial basis functions. The simplest case corresponds to the
displacement of a thin plate constrained to pass through certain points. Here the basic function is
�2,2 = | · |2 log | · |, mapping R2 → R and the thin-plate spline interpolant has the form

s = p1 +
∑
x∈X

�x | · −x|2 log | · −x|,

where p1 ∈ �2
1 and the coefficients {�x : x ∈ X} are orthogonal to linears. It minimizes the

(linearized) bending energy over all sufficiently smooth interpolants, that is over all interpolants
from BL2(R

2). We will show that there is an absolute constant C such that if s is the thin plate
spline interpolant to f ∈ BL2(R

2) at nodes X then on any closed triangle T corresponding to three
of the nodes

‖f − s‖∞,T �C�|f |BL2(R
2)

,

where � is the length of the longest side of the triangle T. This agrees with the results given
separately by Duchon [5], Light and Wayne [7], Powell [9], and Wu and Schaback [11].

The associated native Beppo–Levi space BL2(R
2) is embedded in Ċ1(R

2) modulo �2
1. Further,

Corollary 3 tells us that there exists a constant C such that

sup
0 
=h∈R2

|h|−1‖�2
h[f − s]‖∞ �C|f |BL2(R

2)
. (26)

Consider firstly the situation for a triangle T with vertices interpolation nodes and an edge [a, b]
of T. Suppose that the maximum error on this edge, M, occurs at z, that is M = maxy∈[a,b] |[f −
s](y)| = |[f − s](z)|. Let � be the nearest of the endpoints of the edge to z, and h = z − �. Then,
�2

hg(�) = g(�) − 2g(z) + g(2z − �). Now using that [f − s](�) = 0 and (26),

|h|−1|�2
h[f − s](�)| = |h|−1|2[f − s](z) − [f − s](2z − �)|

� C|f |BL2(R
2)

.
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Since |[f − s](z)| = M and |[f − s](2z − �)|�M it follows that

M �C|h||f |BL2(R
2)

�C
�

2
|f |BL2(R

2)
.

This establishes the bound on the error on the boundary of the triangle T.
Consider now the whole triangle T. Suppose that the maximum error on the triangle M occurs

at z. That is M = maxy∈T |[f − s](y)| = |[f − s](z)|. If z is on the boundary of T the result has
already been proven. Hence assume it does not. Let � be the nearest point on the boundary of T
to z and h = z − �. Then, again from Corollary 3,

|�2
h[f − s](�)| = |[f − s](�) − 2[f − s](z) + [f − s](2z − �)|

� C|h||f |BL2(R
2)

.

Thus, using the result already obtained for edges

M � |2[f − s](z) − [f − s](2z − �)|�C|h||f |BL2(R
2)

+ C
�

2
|f |BL2(R

2)
,

which gives the result for the whole of T.

5.3. Norm interpolation in three dimensions

This example is similar to the last. The basic function is �2,3(x) = |x|, and the native Beppo–
Levi space is BL2(R

3). The interpolant we seek is of the form

s = p1 +
∑
x∈X

�x | · −x|,

where p1 ∈ �3
1. The coefficients {�x : x ∈ X} are orthogonal to linears. The native Beppo–Levi

space is embedded in Ċ1/2(R3) modulo �3
1. In particular Corollary 3 tells us that there exists a

constant C such that

sup
0 
=h∈R3

|h|−1/2‖�2
h[f − s]‖∞ �C|f |BL2(R

3)
. (27)

A simple argument then shows that there exists a constant E such that if z is any point in a closed
tetrahedron with vertices interpolation nodes, and h is the maximum length of an edge of the
tetrahedron, then

| (f − s) (z)|�Eh1/2|f |BL2(R
3)

.
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